

Zyto Light SPEC CBFB Dual Color Break Apart Probe

REF Z-2207-50

For the detection of translocations involving the CBFB gene at 16q22.1 by fluorescence *in situ* hybridization (FISH)

In vitro diagnostic medical device according to EU directive 98/79/EC

Intended use

The <u>ZytoLight SPEC CBFB Dual Color Break Apart Probe</u> (**PL165**) is intended to be used for the detection of translocations involving the CBFB gene at 16q22.1 in formalin-fixed, paraffin-embedded specimens such as leukemic cells by fluorescence *in situ* hybridization (FISH). The probe is intended to be used in combination with <u>ZytoLight FISH Implementation Kits</u> (Prod. No. Z-2028-5/-20, or Z-2099-20). Interpretation of the results must be made within the context of the patient's clinical history with respect to further clinical and pathologic data of the patient by a qualified pathologist.

2. Clinical relevance

CBFB encodes the beta subunit of the CBFA/CBFB transcription factor complex involved in myeloid differentiation. The chromosomal aberrations inv(16)(p13.1q22.1) and the related translocation t(16;16)(p13.1;q22.1), which have been detected in about 10% of patients with AML (acute myeloblastic leukemia), lead to the fusion of CBFB with the MYH11 (smooth muscle myosin heavy chain) gene on 16p13. The resulting CBFB-MYH11 fusion gene is involved in leukemic transformation. AML patients with these genetic rearrangements have a favorable prognosis. Inv(16) may sometimes be difficult to identify using conventional cytogenetic analysis.

3. Test principal

The fluorescence *in situ* hybridization (FISH) technique allows for the detection and visualization of specific nucleic acid sequences in cell preparations. Fluorescently-labeled DNA fragments, so called FISH probes, and their complementary target DNA strands in the preparations are co-denatured and subsequently allowed to anneal during hybridization. Afterwards, unspecific and unbound probe fragments are removed by stringency washing steps. After counterstaining the DNA with DAPI, hybridized probe fragments are visualized using a fluorescence microscope equipped with excitation and emission filters specific for the fluorochromes with which the FISH probe fragments have been directly labeled.

4. Reagents provided

The ZytoLight SPEC CBFB Dual Color Break Apart Probe is composed of:

ZyGreen (excitation 503 nm/emission 528 nm) labeled polynucleotides (9.4 ng/ μ l), which target sequences mapping in 16q22.1* (chr16:67,161,347-67,605,304) distal to the CBFB break point region (see Fig. 1).

- ZyOrange (excitation 547 nm/emission at 572 nm) labeled polynucleotides (~ 3.5 ng/μl), which target sequences mapping in 16q22.1* (chr16:66,882,262-67,102,895) proximal to the CBFB break point region (see Fig. 1).
- Blocking DNA
- Formamid based hybridization buffer

*according to Human Genome Assembly GRCh37/hg19

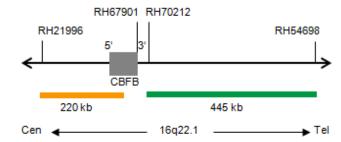


Fig. 1: SPEC CBFB Dual Color Break Apart Probe (not to scale).

The <u>ZytoLight SPEC CBFB Dual Color Break Apart Probe</u> is available in one size:

• Z-2207-50: 0.05 ml (5 reactions of 10 μl each)

5. Materials required but not provided

- Zyto Light FISH-Tissue Implementation Kit (Prod. No. Z-2028-5/-20) or Zyto Light FISH-Cytology Implementation Kit (Prod. No. Z-2099-20)
- Positive and negative control specimens
- Microscope slides, positively charged
- Water bath (37°C, 98°C)
- Hot plate or hybridizer
- Humidity chamber + hybridization oven or hybridizer
- Adjustable pipettes (10 μ l, 30 μ l)
- Staining jars or baths
- Timer
- Calibrated thermometer
- Ethanol or reagent alcohol
- Xylene
- Deionized or distilled water
- Coverslips (22 mm x 22 mm, 24 mm x 60 mm)
- Rubber cement, e.g., <u>Fixogum Rubber Cement</u> (Prod. No. E-4005-50/-125) or similar
- Adequately maintained fluorescence microscope (400-1000x)
- Immersion oil approved for fluorescence microscopy
- Appropriate filter sets

6. Storage and handling

Store at 2-8°C in an upright position protected from light.

Use protected from light. Return to storage conditions immediately after use. Do not use reagents beyond expiration date indicated on the label. The device is stable until expiration date indicated on the label when handled accordingly.

Warnings and precautions

- Read the instruction for use prior to use!
- Do not use the reagents after the expiry date has been reached!
- This product contains substances (in low concentrations and volumes) that are harmful to health and potentially infectious. Avoid any direct contact with the reagents. Take appropriate protective measures (use disposable gloves, protective glasses, and lab garments)!
- If reagents come into contact with skin, rinse skin immediately with copious quantities of water!
- A material safety data sheet is available on request for the professional user.
- Do not reuse reagents.
- Avoid cross-contamination of samples as this may lead to erroneous results.
- The probe should not be exposed to light, especially strong light, for a longer period of time, i.e. all steps should be accomplished, where possible, in the dark and/or using lightproof containers!

Hazards and precaution statements:

Danger

H351 Suspected of causing cancer
 H360FD May damage fertility. May damage the unborn child.
 H373 May cause damage to organs through prolonged or repeated exposure.

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read

and understood.

P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P280 Wear protective gloves/protective clothing/eye

protection/face protection.

P308+P313 IF exposed or concerned: Get medical advice/attention.

P405 Store locked up.

8. Limitations

- For *in vitro* diagnostic use.
- For professional use only.
- Specimen staining, especially signal intensity and background staining, is dependent on the handling and processing of the specimen prior to staining. Improper fixation, freezing, thawing, washing, drying, heating, sectioning, or contamination with other specimens or fluids may produce artefacts or false results. Inconsistent results may result from variations in fixation and embedding methods, as well as from inherent irregularities within the specimen.
- \bullet $\,$ The probe should be used only for detecting loci described in 4. "Reagents provided".
- The performance was validated using the procedures described in this instruction for use. Modifications to these procedures might alter the performance and have to be validated by the user.

9. Preparatory treatment of the device

The product is ready-to-use. No reconstitution, mixing, or dilution is required. Bring probe to room temperature (15-25°C) before use, protect from light. Prior to opening the vial, mix by vortexing and spin down briefly.

10. Assay procedure

Specimen pretreatment

Perform specimen pretreatment (dewaxing, proteolysis) according to the instructions for use of the <u>Zyto Light FISH Implementation Kits</u>.

Denaturation and hybridization

- 1. Pipette $10 \,\mu\text{l}$ of the probe onto each pretreated specimen.
- Cover specimens with a 22 mm x 22 mm coverslip (avoid trapped bubbles) and seal the coverslip.

We recommend using rubber cement (e.g., Fixogum) for sealing.

- Place slides on a hot plate or hybridizer and denature specimens as follows:
- Tissue: 10 min at 75°C
- Lymphocytes, blood, bone marrow: 5 min at 72°C
- **4.** Transfer the slide to a humidity chamber and hybridize overnight at 37°C (e.g. in a hybridization oven).

It is essential that specimens do not dry out during the hybridization step.

Post-hybridization

Perform post-hybridization processing (washing, counter-staining, fluorescence microscopy) according to the instructions for use of the <u>ZytoLight FISH Implementation Kits</u>.

11. Interpretation of results

With the use of appropriate filter sets, the hybridization signals of the labeled chromosomal region 16q22.1 appear green and orange.

Normal situation: In interphases of normal cells or cells without a translocation involving the 16q22.1 band, two green/orange fusion signals appear (see Fig. 2).

Aberrant situation: One 16q22.1 locus affected by a translocation is indicated by one separate green signal and one separate orange signal. (see Fig. 2).

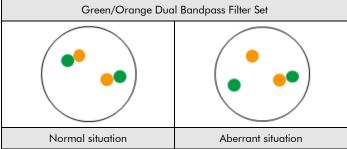


Fig. 2: Expected results in normal and aberrant nuclei

Other signal distribution may be observed in some abnormal samples which might result in different signal pattern than described above, indicating variant rearrangements. Unexpected signal patterns should be further investigated.

Please note:

- Due to decondensed chromatin, single FISH signals can appear as small signal clusters. Thus, two or three signals of the same size, separated by a distance ≤ 1 signal diameter, should be counted as one signal.
- Do not evaluate overlapping nuclei.
- Do not count over-digested nuclei (recognized by dark areas visible inside of the nuclei).
- Do not count nuclei with strong auto-fluorescence, which hinders signal recognition.
- A negative or unspecific result can be caused by multiple factors (see chapter 15).
- In order to correctly interpret the results, the user must validate this
 product prior to use in diagnostic procedures according to national
 and/or international guidelines.

12. Recommended quality control procedures

In order to monitor correct performance of processed specimens and test reagents, each assay should be accompanied by internal and external controls. If internal and/or external controls fail to demonstrate appropriate staining, results with patient specimens must be considered invalid.

Internal control: Non-neoplastic cells within the specimen that exhibit normal signal pattern, e.g., fibroblasts.

External control: Validated positive and negative control specimens.

13. Performance characteristics

Accuracy: The location of hybridization of the probe was evaluated on metaphase spreads of a karyotypically normal male. In all tested specimens the probe hybridized solely to the expected loci. No additional signals or cross-hybridizations were observed. Therefore, the accuracy was calculated to be 100%.

Analytical sensitivity: For the analytical sensitivity assessment, the probe was evaluated on metaphase spreads of karyotypically normal males. All nuclei showed the expected normal signal pattern in all tested specimens. Therefore, the analytical sensitivity was calculated to be 100%.

Analytical specificity: For the analytical specificity assessment, the probe was evaluated on metaphase spreads of karyotypically normal males. In all tested specimens, all signals hybridized solely to the expected target loci and no other loci. Therefore, the analytical specificity was calculated to be 100%.

14. Disposal

The disposal of reagents must be carried out in accordance with local regulations.

15. Troubleshooting

Any deviation from the operating instructions can lead to inferior staining results or to no staining at all.

Weak signals or no signals at all

Possible cause	Action
No target sequences available	Use appropriate controls
Cell or tissue sample has not been properly fixed	Optimize fixing time and fixative or apply a post-fixation step as described in "assay procedure" of the manual of the Zyto Light FISH Implementation Kits
Heat pretreatment, hybridization, proteolysis, denaturation, or stringency wash temperature not correct	Check temperature of all technical devices used, using a calibrated thermometer
Proteolytic pretreatment not carried out properly	Optimize pepsin incubation time, increase or decrease if necessary
Probe evaporation	When using a hybridizer, the use of the wet stripes/water filled tanks is mandatory. When using a hybridization oven, the use of a humidity chamber is required. In addition, the coverslip should be sealed completely e.g., with Fixogum, to prevent drying-out of the sample during hybridization.
Too low concentrated stringency wash buffer	Check concentration of stringency wash buffer
Old dehydration solutions	Prepare fresh dehydration solutions
Fluorescence microscope wrongly adjusted	Adjust correctly

Inappropriate filter sets used	Use filter sets appropriate for the fluochromes of the probe. Triple-bandpass filter sets provide less Light compared to single or dualbandpass filter sets. Consequently, the signals may appear fainter using these triple-bandpass filter sets.
Too strong beam of <i>Light</i> while handling probes/slides	Accomplish hybridization and washing steps in the dark

Tissue morphology degraded

Possible cause	Action
Cell or tissue sample has not been properly fixed	Optimize fixing time and fixative or apply a post-fixation step as described in ("assay procedure") of the manual of the Zyto Light FISH Implementation Kits
Proteolytic pretreatment not carried out properly	Optimize pepsin incubation time
Insufficient drying before probe application	Extend air-drying

Cross hybridization signals; noisy background

Possible cause	Action
Incomplete dewaxing	Use fresh solutions; check duration of dewaxing
Proteolytic pretreatment too strong	Optimize pepsin incubation time
Probe volume per area too high	Reduce probe volume per section/area, distribute probe dropwise to avoid local concentration
Slides cooled to room temperature before hybridization	Transfer the slides quickly to 37°C
Too high concentrated stringency wash buffer	Check concentration of stringency wash buffer
Washing temperature following hybridization too low	Check temperature; increase if necessary
Dehydration of sections between the individual incubation steps	Prevent dehydration by sealing the slides and performing incubation in humid environment

Overlapping signals

Possible cause	Action
Inappropriate thickness of tissue sections	Prepare 2-4 μm microtome sections

Specimen floats off the slide

Possible cause	Action
Unsuitable slide coating	Use appropriate (positively charged) slides
Proteolytic pretreatment too strong	Shorten pepsin incubation time

Weak counterstain

Possible cause	Action
Low concentrated DAPI	Use <u>DAPI/DuraTect-Solution (ultra)</u> (Prod. No. MT-0008-0.8) instead
DAPI incubation time too short	Adjust DAPI incubation time

16. Literature

- Aventín A, et al. (2002) Cancer Genet Cytogenet 134: 142-4.
- Dierlamm J, et al. (1998) Genes Chromosomes and Cancer 22: 87-94.
- Kievits T, et al. (1990) Cytogenet Cell Genet 53: 134-6.
- Krauter J, et al. (2001) Genes Chromosomes and Cancer 30: 3428
- Le Beau MM, et al. (1983) N Engl J Med 309: 630-6.
- Li MM, et al. (2013) Curr Genet Med Rep 1: 99-112.
- Wilkinson DG: In Situ Hybridization, A Practical Approach, Oxford University Press (1992) ISBN 0 19 963327 4.

Trademarks:

ZytoVision® and ZytoLight® are trademarks of ZytoVision GmbH.

ZytoVision GmbH Fischkai 1 27572 Bremerhaven/ Germany Phone: +49 471 4832-300 Fax: +49 471 4832-509

www.zytovision.com
Email: info@zytovision.com

Our experts are available to answer your questions. Please contact <u>helptech@zytovision.com</u>